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Computer-Assisted Studies of Molecular
Structure and Genotoxic Activity by Pattern
Recognition Techniques

by Terry R. Stouch* and Peter C. Jurs*t

Often a compound’s biological activity is determined by complex relationships between its structural
components. Such a relationship often can only be adequately described and exploited by multivariate
structure-activity relationship (SAR) sfudies that can deal with many variables simultaneousty. Pattern
recognition (PR) is a multivariate technique that is well suited for the qualitative, active-inactive, data
that is often supplied by biological assays. PR studies of compounds of known activity can yield information
that will allow the prediction of the activity of untested compounds. ADAPT is a computerized system
that was developed for such PR-SAR studies. A general introduction to this field is presented and the
methodology used for such a study is described in the context of an actual study of mutagenic compounds.
The data requirements, descriptor generation, and the details of a PR study are discussed. In addition,
the example study was chosen to highlight the problems that may occur if a study is not well formulated
and carefully executed. Current work and future plans for computerized mutagen screening are discussed.

Introduction

Pattern recognition (PR), a subfield of artificial in-
telligence, consists of several loosely related mathe-
matical techniques. The goal of these techniques is to
classify numerical patterns inte one of several possible
classes. In structure-activity relationship (SAR) stud-
ies, the patterns consist of vectors of ‘measurements’
made of the compounds in the study. Each class consists
of compounds of like activity. A PR-SAR analysis en-
tails finding those structural features that will define
the distinct classes of activity. This is often performed
first for a training set of compounds of known activity.
The results for the training set can then be applied to
predict the activity of unknowns.

PR technigues fall into several categories: cluster an-
alysis (1), mapping (2), discriminant generation {3), and
principal eomponents analysis (4). Several computerized
systems have been developed for conducting PR stud-
ies: ADAPT (5), ARTHUR (6), and SIMCA (}). Many
SAR-PR studies have appeared in the literature (7-28),
and several reviews and books deal in part or in whole
with such studies (5,10,18,19). SIMCA will be discussed
in detail elsewhere in this volume. Qur intent is not to
duplicate these reviews but to clarify, by example, the

*Department of Chemistry, 152 Davey Laboratory, The Pennsyl-
vania State University, University Park, PA 16802,
TAunthor to whom reprint requests should be sent,

methodology and problems involved in studies applying
linear discriminant functions (LDFs).

Our research group has been involved in the devel-
opment and use of the interactive software system
ADAPT (Automated Data Analysis using Pattern Rec-
ognition Techniques). This system conveniently inte-
grates the many steps required for a complete SAR
study not only using PR but also using a variety of
statistical techniques. Modular routines provide for
structure entry, descriptor generation, and data ana-
ysis. ADAPT studies have been performed on antitu-
mor agents (11), carcinogenic substances (8,9,12,13), and
olfactory stimulants (10).

In this paper, the methodology used for such a study
is described in the context of an actual study of muta-
genic compounds. The data requirements, descriptor
generation and the details of a PR study are discussed.
In addition, the example study was chosen to highlight
the problems that can occur if a study is not well for-
mulated and carefully executed.

Theory

A discussion of theory will help to clarify the rest of
this paper. Very simply put, the goal of an SAR study
is to find a function of structural or physieal properties
that will explain a compound’s activity relative to other
similar compounds. A PR-SAR study is based on sev-
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Ficure 1. Boiling point vs. melting point for some simple aldehydes

(A) and ketones (K). Note that the two classes cluster in separate
regions of the plot. Z is a compound of unknown classification.

eral assumptions: (1) The activity and its variation can
be explained by variations within the structures. (2) The
structures can be sufficiently described by numerical
indices (descriptors). (3) Pattern recognition techniques
can be used to discover a relationship between the de-
scriptors and the activity. (4) This relationship ean be
extrapolated to untested compounds.

Each compound in a study is referred to as an ob-
servation or pattern and each structural feature or ex-
perimental property is referred to as a variable or
descriptor. Simple problems can be viewed graphically
as in Figure 1. This is a plot of several aldehydes (A)
and ketones (K) as represented by their melting points
and boiling points. In the “space” of these two physical
parameters, the aldehydes cluster in a different region
of this “two-space” than the ketones. This differential
clustering is the basis for pattern recognition. If a new
compound (7} is plotted in this same space, the likeli-
hood is high that it will belong to the same class as
neighboring patterns, in this case, aldehydes. This is a
very simple example of cluster analysis. Techniques that
generate diseriminant functions also rely on this clus-
tering, but instead of comparing an observation to oth-
ers they simplify the problem by generating a boundary
that will separate the regions of the space which contain
the two clusters (Fig. 2). In this two-space the boundary
consists of a line. In three dimensions, a plane would
be used, and in higher dimensions, a hyperplane. We
are most concerned with these higher dimensional prob-
lems. Sirriple one- and two-dimensional problems can be
approached visually, but higher dimensional problems
reqtire the use of computer-aided mathematics. It should
be noted that the boundary shown'in Figure 2 is only
one of the many which will separate the two classes.

Boiling Point

’ ]
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FIGURE 2. A one-dimensicnal hyperplane that separates the two
regions which contain the two different classes.

LDFs are often referred to as weight vectors. An
LDF is a vector of weights (coefficients) for the de-
seriptors. A plane, say the boundary between two
classes, is defined by a point on that plane and a vector
normal to the plane’s surface. Often an extra dimension
is added to the data so that the plane includes the point
at the origin {0,0,...,0). It is this point and the weight
vector that define the boundary. Adding the extra di-
mension in this way greatly simplifies the calculations.

The discriminant lines, planes, and hyperplanes are
defined by linear combinations of the descriptors used
in their development and so the weight vectors are re-
ferred to as linear discriminant functions. While nonlin-
ear discriminants can also be used, they are more difficult
to deal with both conceptuaily and computationally. Also,
many nonlinear relationships can be investigated by
gealing or transforming the variables. Linear SAR stud-
ies routinely use the logarithm of a variable in order to
linearize exponentials. For these reasons, studies using
linear discriminant functions are more common than
those using nonlinear functions, and we will restriet our
discussions to the linear case. Scaling and normalization
will not be discussed in detail here; the interested reader
can refer to the literature (8,5).

There are many ways to generate LDF's. Parametric
methods calculate the LDF using class statisties that
are based on some assumed distribution, usually a mul-
tivariate normal distribution. Nonparametric' methods
use the information contained in the individual patterns
to determine the placement of the hyperplane. Non-
parametric methods include the linear learning machine
(20) and several least-squares methods (21,22) as well
as others. Nonparametric methods are applied to prob-
lems for which the distribution is unknown and difficult
to determine.
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Regression analysis is a widely used technigue in SAR.
Sinee it bears some superficial resemblances to PR, and
since some tend to confuse the capabilities of the two,
we would like to draw a contrast between these meth-
ods. Both use numerically encoded structural features
or physical properties to represent the compounds, and
both generate a vector of weights that describe a re-
lationship between those descriptors and the activities
of the compounds. The similarity ends at this point. The
data requirements, capabilities, and weight vectors are
very different.

Regresgion analysis finds that line, plane, or hyper-
plane that best “fits” the data. PR analysis, as was noted
previously, finds a hyperplane that separates the data
points into two or more regions of the data space.
Regression analysis determines a unigue hyperplane by
finding those weights that minimize a function of the
difference between the actual and predicted activity.
The hyperpiane represented by the LDF is not unique
and is determined by the general regions of the space
in which the classes fall. Given the same data, a plane
represented by an LDF might lie at a 90° angle to the
regression-generated plane.

PR and regression analysis are best suited to different
types of problems. The capabilities of regression ana-
lysis are best realized when a quantitative index of ac-
tivity is provided. Such information is often difficult or
expensive to obtain. Often qualitative, active—inactive,
information is more readily available and such data is
better suited to the classification routines of PR. The
type of data supplied for such a study, quantitative or
qualitative, determines the type of information which a
study can supply in return. An analysis cannot generate
new data and cannot supply quantitative information
when only gqualitative information is provided. Regres-
sion studies are often used to supply a quantitative pre-
diction of the activity of an unknown. This is reasonable
if the activities of the compounds used to generate the
regression model were also known quantitatively. PR,
however, is usually provided only with qualitative, class
information and no quantitative predictions can be ex-
pected in return. Additienally, since the LDFs are non-
unique, any quantitative index will vary depending on
which of these vectors is used,

A velated topic is that of the interpretation of the
coefficients of the regression model or the LDF. The
nature of regression analysis allows for evaluation of
the importance of a particular descriptor to a model by
examination of its partial F-statistic. In fact, variables
are chosen for their ability to explain the variance in
the activity. Once again, less information is provided to
PR routines and so less should be expected in return.
Coefficients of an LDF should be interpreted with care.
Descriptor importance is dependent on the complete set
of descriptors used. The overall set is chosen for its
ability to discriminate between the classes and an in-
dividual variable’s contribution to the set may vary from
its dieriminatory ability alone.

Finally, a few words about the number of observa-

tions required to conduet a PR study. There are no firm
guidelines to specify this parameter. Depending on the
type of structures, the activity which determines the
classifications, and the descriptors employed, the num-
ber of compounds needed for a study will vary. Most
ADAPT studies have been conducted with well over 50
compounds; many range into the hundreds. The more
information that is provided to the PR routines, the
more reliable will be the results. Also, as will soon be
explained, the number of patterns that are involved in
a study determines the allowable number of descriptors
that can be used to describe those patterns. Small stud-
ies must necessarily be ‘“4ight’ structurally or mechan-
istically because there will only be a few allowable
features with which to desecribe them.

This brief diseussion of some aspects of PR and
regression analysis has introduced some ideas to be used
in the remainder of this paper. More complete discus-
sions of these methods can be found in the literature
(3,5,20-26).

Data

The first step of an analysis is crucial—development
of the data set which will be investigated. From the
compounds in this set, the training set, important de-
seriptors will be identified from which the LDFs will be
generated. The only information which the PR routines
have to work with is provided by this training set as it
is represented by the descriptors. The predictive ability
of an analysis will depend on the accuracy, complete-
ness, and sufficiency of the data. Later in this paper,
the choice of data will be discussed further.

We have been working with the Metabolism and Car-
cinogenesis Branch of the U.3. Environmental Protec-
tion Agency towards developing a computerized method
of sereening potential mutagens, Thousands of chemi-
cals are submitted for regulatory decisions each year
and it is impossible both financially and practically to
perform full-seale laboratory testing on them all, A com-
puterized system that could readily identify potential
mutagens would be valuable in prioritizing the labora-
tory testing.

The initial goal was to conduct SAR studies that would
duplicate some i» vitro assays that provide valuable
screening information. The assay that we have exam-
ined most completely is the E. coli WP2uvrA reverse-
mutation assay. This assay was of interest because it
has been used widely and is well documented (27). Also,
a set of compounds screened in this assay were available
through a published report of the Gene-Tox program
{27,28). This program is respensible for evaluating ge-
netic toxicity assays. It often publishes lists of com-
pounds that have been tested in the assays and that the
authors, a panel of experts, feel have been properly
assayed and classified.

The teport on the E. coli WP2uvrA tryptophan re-
version assay contained a list of 158 compounds that had
been assayed using this and another E. coli assay. Of
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Table 1. Training set compounds.

No. Compounds No. Compounds
Mutagens Nonmutagens
1 Nifuroxime - 51 Benzoic acid
2 Nitrofurantoin 82 Quintozene

3 Captafol

4 Dimethylnitrosamine

5  5-Nitro-2-furanoic acid

6 Dichlorvos

7 Henopyl

8 Mitomycin-C

9 Methylhydrazine

10 Misonidazole

11 NF-67

12 Nifuratrone

13 Trichlorfon

14 Styrene oxide

15 N-Methyl-N'-nitronitrosoguanine

16 Hydroxyethylhydrazine

17 Cyclophosphamide

18 7-Bromomethylbenz{a)anthracene

19 Nitrofluorene

20 Ethylmethanesulfonate

21 Metronidazole

22 Niridazole

23 Dexon :

24 Nitrosomethylurea -

25  Acrylonitrile

26 p-Bromostryrene oxide

27 m-Chlorostyrene oxide

28 3,4-Dimethylstyrene oxide

29 m-Methylstyrene oxide

30 p-Methylstyrene oxide

31 Sulfur mustard -

32 Methyl methanesulfonate

33  2-Chloro 4-(5-nitro-2-furylthiazole

34 2-Hydrazino-4-(5-nitro-2-furyl}thiazole

35 3-Amino-6-[2-(5-nitrc-2-furyl)-vinyl-1,2, 4-triazine

36 N4-Hydroxycytidine

37 N-[-(5-Nitro-2-furyl)-2-thaizolyllformamide

38 5-Nitro-2-furanmethandiol diacetate

39 Furazolidone

40 4-Nitroquinoline-N-oxide

41 2-[4-(5-Nitro-2-furyl)-2-thiazolyl]-
formhydrazide

42 N-[3-(5-Nitro-2-furyl)-6H-1,2,4-oxadiazin-5-y1]-
acetamide

43 3-(5-Nitro-2-furyl)-4H-1,2 4-triazole

44 1-(5-Nitro-2-furyl)-3-piperidino-propan-1-one
semicarbazone HCI

45 Furylfuramide

46 Vamidothion

47 Furmethanol

48 1-(5-Nitro-2-furfurylidine)-3-N, N-diethyl-
propylaminourea HCI

49 Captan

50 Folpet

53  Furaldehyde semicarbazone

54 2,4-Dichlorophenoxy-butanoic acid
55 1,3,5-Trichloro-2,4,6-trinitrobenzene
56 Acephate

57 Aspon

58 Azinphos-methyl
59 Mannitol

60 Carbofuran

61 Dicamba

62 Disulfoton

63 Monocrotaline

64 Ethion

65 Fonofos

66 Fensulfothion

67 Malathion

68  Parathion-methyl

69 Simazine

70 Trifluralin

71 N-f4[(5-Nitro-2-furyl)-2-thiazolyllacetamide
72 2,2 2-Trifluoro-N-{4-(5-nitro-2-furyl)-

2-thiazolyl]acetamide

73 2,4-Dichlorophenoxyacetic acid

74 Adipic acid

5 1,3,5-Trichlorobenzene

76 1,3,5-Triamino-2,4,6-trinitrobenzene

77 m-Methoxystyrene oxide

78 N-[4-(5-Nitro-2-furyl)-2-thiazolyllphenylamine
79 2-Amino-4-(5-nitro-2-furyl)thiazole

80 2-(2,2-Dimethylhydrazine)-4-(5-nitro-2-furylythiazole
81 2,4-Dinitrophenylthiceyanate

82 Ethylenethiourea 2-fury})-vinyl-1,2,4-triazine
83 b5-Nitronaphthonitrile

84 Hippuric acid 2-thiazolyl]-formhydrazide
Bh 2-[4-(2-Furyl)-2-thiazolyllformhydrazide

86 2-[4-Methyl-2-thiazolyl] formhydrazide

87 (.8--Dibenzoylthiamine HCl

83 Carteoloe HCl

8% Ethylidine gyromitrin

] 1-[[3-(5-Nitro-2-furanyl)-2-propenylindenelaminol-

2,4-imidazolidinedione

91 Crotexyphos

92 Monoerotophos

93 Bromacil

94 Chlorpyrifos

95 Diazinon

96 Dinaseb

97 Endrin

98 Fenthion

99 Methomyl
100 Methoxychlor
11 Monuron
102 Parathion
103 Phorate
104 Propanil
105 Siduron

these, 19 were inorganics, which are not compatible
with the ADAPT system or mixtures, which are inap-
propriate for such a study. Of the 139 compounds re-
maining, 105 were definite mutagens (50) or
nonmutagens (55) in the assay of interest (Table 1).
These 105 compounds were structurally diverse and
ranged in complexity from methylhydrazine to mito-
myein-C. Halogenated hydrocarbons, phosphates and

thiophesphates, sulfates, polycyclic aromatic hydrocar-
bons, nitrofurans, substituted benzenes, styrene ox-
ides, and triazines were represented, as well as others.
No single type dominated, however, and the largest
class had fewer than 10 members.

Normally, SAR studies deal with structurally similar
compounds and are concerned with minor changes in
structure that can cause great changes in activity. How-
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ever, in cases where activity is determined by some
general physical property such as size, shape, or solu-
bility, even structurally diverse compounds might be
related. Alzo, if the activity is mediated by a commen
intermediate or receptor site, only a portion of the mo-
leculesmay be important; that portion which interacts
with the receptor or undergoes conversion to the in-
termediate. Often in problems of biological activity, the
mechanism of action is very complex and might be de-
termined by many different effects operating simuita-
neously. In such a case, multivariate analysis may be
the only recourse to discovering, understanding, or ex-
plaining this activity. We had hoped to uncover some
“core” of mutagenesis among the training set members
that would apply to other, untested mutagens.

Once the training set had been established, the next
step in the analysis was to provide the structures to the
computer, This was accomplished by using an interac-
tive graphics routine, UDRAW (29,30). The compounds
were sketched by hand on a CRT terminal and the strue-
tural information was automatically stored in files where
it was available to the descriptor generating programs.

Descriptor Generation

The goal of descriptor generation is to numerically
code those properties that may be correlated with the
biological activity. This step reduces the structural com-
plexity of a compound to single numbers. Descriptors
must be generated and examined carefully in order to
be sure that they contain the intended infortnation.
Sometimes the needed information can be lost in the
transfer from the chemist’s perception of the structure
to the single numetical value contained in the descriptor.

Many different physical and structural parameters
have proven useful in SAR studies. The value of any
one descriptor is determined by the study at hand.
Sometimes an activity may depend on simple physical
properties such as size, volume, or log P. In other cases,
the activity may depend on more complex electronic and
steric effects that occur simultanecusly at different sites.
The ADAPT system has a variety of descriptor gen-
erating rontines that encode a wide range of structural
and physical properties. Many properties of whole mol-
ecules can be calculated. The log of the partition coef-
ficient between octanol and water, log P, is a parameter
that has been very useful in many SAR studies and that
can be calculated by the fragment addition method of
Hanseh and Leo (31,32). Molar refractivity is also com-
monly used and can be calculated using a similar ap-
proach {33). Surface area and molecular volume (34,35)
and moments of inertia (36) complete the list of whole
molecule physical chemical descriptors that ADAPT
programs can calculate.

Simple quantum mechanical indices are available in
the ADAPT system from del Re sigma charges (37) and
simple and extended Huckel caleulations, Several stud-
ies have used this information.

Molecular connectivity as proposed by Randic (38)
and extended by Kier and Hall correlate highly with

many physical properties and have been used in SAR
studies (39). Molecular connectivity provides indices of
a molecule’s size and degree of branching.

Substructural descriptors are valuable in emphasizing
reactive sites and pharmacophores. While they can serve
as simple indicator variables, they can also be used in
tandem with molecular connectivity or other calcula-
tions to yield information concerning the environment
and reactivity of the substructure (5). Substructural
analysis is common in SAR studies and has been ap-
proached by using a variety of techniques, including PR
(40~43).

For some studies very simple deseriptors may be val-
uable. Counts of the number of a particular atom or
bond type and counts of the number of rings are ex-
amples of such descriptors and are often referred to as
fragment descriptors. Molecular weight is another sim-
ply calculated parameter. If experimental information
is available, it too can be used.

Prescreening of Descriptors

Before they are used in an SAR study, descriptors
should be prescreened using several simple checks. First,
a descriptor that codes for very few compounds should
be considered only if there is good reason to think that
it could be very valuable. Such deseriptors can lead to
a fortuitous “partitioning off” of those few compounds
which they code for and they may not be valuable in
explaining overall trends. ldeally, a deseriptor should
code for all of the observations. Descriptors usually are
not considered if they do not code for at least 10% of
the observations in each class,

Another simple check is for collinearities and multi-
collinearities between the descriptors. Collinearities
mean that a descriptor can be expressed as a weighted
linear combination of other descriptors. For example,
molecular weight is a weighted summation of atom
counts. Such collinearities needlessly duplicate infor-
mation. Also, unduly high collinearities among descrip-
tors cause several matrices that arise in the PR phase
of the studies to be singular or nearly singular, causing
pumerical difficulties when the matrices must be
inverted.

A final check involves examination of the standard
deviation of the descriptors. This is a measure of the
spread of values that a deseriptor has through the train-
ing set of compounds. A descriptor with zero standard
deviation provides no information and simply uses up
the allowable degrees of freedom that will be discussed
shortly.

Autosealing is often performed prior to PR analysis.
This step simultaneously scales and normalizes each de-
scriptor by subtracting that descriptor’s mean and di-
viding by its standard deviation. This gives each
deseriptor a2 mean of zero and a standard deviation of
one. While the overall distribution of the deseriptor val-
ues is unaffected, this step removes any weighting effect
due to the unit size of the descriptors. Autoscaling pre-



334 STOUCH AND JURS

vents descriptors with large absolute values from oc-
cluding the effects of deseriptors whose absolute values
are small in comparison.

Feature Selection

Once a pool of suitable deseriptors is available, then
how is the first set formulated for PR analysis? It is
tempting simply to use very large pools of descriptors
hoping first to identify some relationship within that
large pool and then progressively to remove those de-
scriptors that contribute little or nothing to that rela-
tionship. This approach has several drawbacks. First,
Stuper et al. (44) have shown that overdescribed cases
can actually ocelude a separable set. Second, they also
determined that feature selection procedures were of
little use in identifying useless descriptors in such eases.
A more important drawback deals with fortuitous sep-
arations. It is well known that for a fixed number of
observations the probability of achieving a fortuitous,
and probably useless, linear separation increases as the
number of descriptors inereases (1,3,5,20). In fact, if
the number of variables is greater than or equal to the
number of observations, then 100% separation is guar-
anteed. The probability of chance separation can be kept
low by keeping the number of descriptors used at any
one time to below one-third the number of ohservations
(44) or, when the class sizes are unequal, to below the
number of observations in the smallest class (45). In
general, the fewer the descriptors used, the more likely
that real relationships will be unecovered.

Since the cempounds in the mutagen study were di-
verse and no clear classification scheme was obvious,
the analysis was started with simple, easily generated
descriptors. If the required classifications are possible
by using simple descriptors, then there is little benefit
in initially generating complex descriptors. These can
be generated if and when they are required.

The simple descriptors alone usually do not achieve
very substantial classifications. The definition of “good”
classification depends on the study at hand. Certainly
100% correct classification of all the data points is the
most desirable result. Allowance must always be made,
however, for the outliers and incorreet preclassifica-
tions. Also, many of the descriptors are caleulated based
on approximations or on the properties of isolated sub-
structural fragments that do not consider the bulk of
the molecule. A set of such descriptors might not be
expected to eompletely account for all variation in the
training set. Few regression studies result in correla-
tion coefficient values of one and PR studies should not
always be expected to yield 100% classification.

In the mutagen study the first set of 12 simple frag-
ment and molecular connectivity descriptors achieved
8% correct classification. In view of the complex struc-
tures and the variety of functional sites, this is not sur-
prising. It simply means that there was insufficient
information within the descriptors to completely de-

scribe the mutagen-nonmutagen reiationship that was
assumed to be present within the training set.

Often many forms of data analysis engage in “explo-
ration” of the data. Exploratory data analysis consists
of searching for a suspected relationship among data.
In the mutagen study, this meant screening a series of
potentially valuable physical properties and struetural
features that may affect the biological activity. Feature
selection is a means of identifying both useful and use-
less deseriptors. There are many methods of feature
selection of which variance feature selection is one. There
is an extension of the weight-sign method of feature
selection and is superior to that technique (46). A brief
example will illustrate.

In the mutagen study, the descriptor set at this early
stage of analysis was incapable of completely separating
the training set, but it was capable of separating about
74 of the 105 compounds. The descriptor set did contain
some useful information. Before new descriptors were
added to this set, the descriptors were screened to see
if they were all valuable or if there were extraneous
variables that could be eliminated.

As stated previously, in all but severely restricted
cases the hyperplane which separates any two classes
is not unique; many will serve the same purpose. These
different hyperplanes will be defined by different weight
vectors that are composed of the weighting coefficients
for the descriptors. As the hyperplane shifts position
the coefficients which define that plane will change also.
Intrinsic variables, those which contribute to the sep-
aration of the classes, will be constrained by the class
distribution while nonintringic variables have fewer con-
straints and so are free to vary more widely. Variance
feature selection is performed by calculating many hy-
perplanes that separate the separable compounds. The
variance of each component of the correspondig weight
vectors is a qualitative indicator of the contribution that
the corresponding descriptor makes to the separation.
Useless variables will generally have much higher var-
iances than those which are useful in the separation.
More detailed explanations of the theory and procedure
can be found elsewhere (5).

A conceptually simpler, but less elegant and much
more time-consuming method with which to feature se-
lect is to systematically eliminate one or several de-
seriptors at a time and to apply PR methods to this
reduced set.

From this point, a cycle of descriptor generation, PR
analysis, and feature selection was followed. In order
to determine those features that are important to clas-
sification and that have not, as yet, been tried, gener-
ation of new descriptors is often aided by the examination
of previously misclassified patterns, the current de-
scriptor set, and descriptors previously evaluated and
disearded. Once simple descriptors prove insufficient to
the task, more complex descriptors must be tried. Often
this involves using substructure based descriptors. Sub-
structural descriptors have the advantage of directly
coding for functional groups which, of course, determine
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FIGURE 3. Substructures used in descriptor generation for the mu-
tagen study. Hydrogens are suppressed and dashed lines indicate
aromatic bonds. X signifies an atom of unspecified type and un-
specified connectivity.

much of a ecompound’s chemistry. Figure 3 shows some
of the substructures that were examined in the course
of the mutagen study. In order to code for as large a
fraction of the compounds as possible within this diverse
group, the substructures were kept simple. In a more
homogenecus study, more detailed substructures may
be of advantage.

The eycle of deseriptor generation, PR analysis, and
feature selection continued until the addition of further
descriptors failed to improve the results appreciably. If
the addition of one descriptor allows for the classification
of only one additional pattern, then it is unclear whether
that descriptor actually adds additional information or
whether it simply provides the PR routines with a
meaningless additional degree of freedom. Such a de-
scriptor should be critically evaluated before it is used
in a study. A similar criterion is also used when re-
moving descriptors from a set. Often a set is reduced
until further reduction causes a large increase in the
number of misclassified patterns.

During this study a total of 64 descriptors were ex-
amined using the PR routines. At no time were more
than 30 used in any one set, well within the three-to-
one limitation. The study was terminated when a set of
10 descriptors was found which classified 90% of the
training set. Eleven compounds were misclassified; five
of the mutagens and six of the nonmutagens. This final
descriptor set is presented in Table 2, Figure 4 contains
sample descriptor values for two of the training set
compounds.
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FIGURE 4. Descriptor values for two compounds in the mutagen
training set. Numbering is keyed to the descriptors shown in Table

2.

Table 2. Final descriptor set for the mutagen data set.

Deseriptor

10

Number of sulfur atoms
Intermediate principal axis
Number of paths per atom

Molecular connectivity, valence cluster
5

Moleeular connectivity, valence path 1
of the immediate environment of a
phenyl ring

Molecular connectivity, valence path 1,
of the immediate environment
around a thiazole fragment
(substructure 9)

Sum of the number of paths around an
ether oxygen

Sum of the number of paths around
doubly and singly bonded nitrogen

del Re sigma charge on a carbeny!
carbon

del Re sigma charge on a secondary
amine nitrogen

Fragment
Geometric

Complexity - whole
molecule

Complexity -
substructural

Electronic
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Internal Validation

Internal validation serves as a first step in the as-
sessment of the predietive ability of a descriptor set.
These procedures are usually performed by forming
several subsets of the training set by removing one to
many of the observations into separate prediction sets.
Discriminants generated from the reduced sets are used
to predict the activity of the excluded compounds.

The internal validation procedure must not be thought
of as a test of the classification ability that a discriminant
would be expected to show with true unknowns. The
actual predictive ability of an LDF can be assessed only
through verifiable prediction of the activity of com-
pounds that were not involved in the descriptor set
development. The descriptor set was generated by an-
alysis of the members of the training set and is depen-
dent on those members. Internal validation results tell
us something about the integrity of the data and the
descriptor sets but are not a replacement for actual
external prediction. Poor internal validation results are,
perhaps, more informative than good results. Poor re-
sults should cause a reexamination of the descriptor set,
the data set, or both. Obviously, if the descriptor set
and the reduced training sets can not provide discrim-
inants that will correctly classify the members of the
overall training set, then there is little chance of ob-
taining reliable external prediction results.

Internal consistency checks were performed in the
mutagen study by forming 100 subsets of the training
set minus the 11 misclassified patterns. The correspond-
ing prediction set for each of the subsets consisted of
five mutagens and five nonmutagens which were picked

at random from the separable compounds. For the final
set, reported in Table 2, the average internal prediction
result over the 100 sets was 90%.

External Prediction

The main objective of this study was to develop a set
of descriptors and a discriminant which could classify
mutagens as defined by the E. coli WP2uvrA assav.
The deseriptor set in Table 2 gave what appears to be
good clasgification results and the internal consistency
results were encouraging. The study was ready for the
final test—external prediction.

External prediction constitutes extrapolation of the
relationship found within the training set. As such, the
general rules for extrapolation should apply. A rela-
tionship should not be extrapolated beyond the range
of the original data. This caution is easily applied to a
two-dimensional plot but extension to higher dimen-
sional cases is difficult. Some index or indices of simi-
larity are needed to assess the similarity of an external
compound to the training set compounds. When dealing
with structurally homogeneous sets of compounds, ex-
treme cases of dissimilarity are easily identified. Within
this heterogeneous set of mutagen compounds, how-
ever, even extreme cases could be missed by visual
examination.

The most obvious place to start is to check to see
whether the descriptors even code for the external com-
pound. If a compound has no features similar to the
training set, then there is no basis for external predie-
tion. This may seem obvious, but it should be noted that
a pattern filled with zeros is a perfectly valid point in

Table 3. Prediction set compounds

No. Compounds No. Compounds
Mutagens Nonmutagens

1 2-Nitrofluorene 20 2-Aminofluorene

2 N-Acetyl-N'-nitrosotryptophan methyl ester 21 i-Naphthylisothiocyanate
3 N-Acetyl-N'-nitrosotryptophan 22 p-Bromeaniline

4 Dimethoate 23 Anethole

5 Epichlorchydrin 24 Estragole

6 Diethyl sulfate 25 Cinnamyl aleohol

7 2,4-Dinitrophenylhydrazine 26 Cinnamaldehyde

8 N-Ethyl-N-(2-methylallyl)-N-nitrosamine 27 Carbon disulfide

9 N-Propyl-N-(2-methylallyl)-N-nitrosamine 28 Safrole
10 4-Nitropyridine-N-oxide 29 1.2-Benzanthracene

11 8-Nitroguinoline

12 Thioquarine

13 Psoralen

14 8-Methylpsoralen

15 Angelicin

16 4,5'-Dimethylangelicin

17 6-Bromo-4,4-dimethyleyeolhexcnone
18 Dimetridazele

19 Ipronidazole

30 9.10-Benzanthracene

31 1,1,1-Trichloroethane

32 2-(2',4’-Diaminophenoxyethanol
33 Butter Yellow

4 Diethylstilbestrol

35 4,4'-Methylene-bis-(2-chloroaniline)

36 Tetrachlorvinphos
37 Azoxybenzene

38 Ethionine

39 Nalidixic acid

40 Hexamethylphosphoramide
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d-dimensional hyperspace, and carelessness may allow
such “undescribed” compounds to enter into consider-
ation. The mean number of descriptors coded per com-
pound in the training set was five and this was used as
a cutoff value for the external prediction compounds.

Similarity was also maintained by comparing the Ma-
halanobis distances of the prediction compounds to those
of the training set compounds. The Mahalanobis dis-
tance of a point is that point’s distance from the center
of the data cluster in which it is contained. A require-
ment, for external prediction was that the point lay well
within the data cluster that was formed by the training
set. Forty structurally dissimilar compounds meeting
these requirements were obtained from the literature
and are listed in Table 3.

In order to perform the predictions, an optimum dis-
eriminant was generated from the training set by cen-
tering the hyperplane between the classes. This was
done by giving the hyperplane its greatest possible
“thickness” by using what has been called a deadzone.
Since there is no unigue weight vector for a particular
problem, and there is no clear criterion for choosing one
of the many diseriminants, centering in this way seems
to be a reasonable choice,

This final vector was used to predict the activity of
the external compounds. Prediction results were poor—
50% overall, 45% for the mutagens and 57% for the
nenmutagens, This is approximately what one would
expect from random chance.

Difficulties

While the training set results looked promising, care-
fully executed external prediction failed. How can we
account for these seemingly contradictory results? Can
such results be avoided? In the remainder of this paper
we will endeavor to answer these questions by exam-
ining both the data and the methodology. We will high-
light several difficulties that oecurred in this study and
we will show how such problems can be avoided.

The structurally diverse nature of the compounds
placed the study under suspicion. Analysis of the het-
erogeneous structures raises many questions. First, can
the data really be subdivided into two distinct classes?
If not, how does the presence of subclasses affect PR
analysis? Second, if a two-class problem is justifiable,
can descriptors be found that will adequately describe
the activity of such diverse structures? Third, if the
answer to either of the above questions is “no,” then
what are the chances of arriving at fortuitous results
that are equivalent to the results obtained for the train-
ing set? We will address each of these questions in turn,

Mechanism of Mutagenesis

We have assumed that mutagenesis is a two-class
problem, that mutagens constitute a distinct class apart
from nonmutagens. Is this a realistic assumption? A
closer look at the mechanism of mutation may answer
this guestion.

Mutations are defined as heritable changes in the DNA;
a mutagen changes the original sequence of bases in the
DNA. Mutagens cause these changes by several mech-
anisms. Base analogs are often incorporated directly
into the DNA and flat molecules, such as acridines, are
known to intercalate between the base pairs. In most
cases, however, mutagens react electrophilically with
nucleophiles within the DNA (47). These reactions are
known to oceur at most of DNA’s mucleophilic sites.
Mutagens react at the 0-6, N-2, N-3, N-7, and C-8 po-
sitions of guanine. Adenine is attacked at its N-6, N-1,
N-3, and N-7 positions. Cytosine reacts at its 0-2, N-
3, and N-4 atoms, and thymine at its 0-2, N-3, and O-
4 sites. The phosphodiester backbone also has sites that
react with mutagens. Some mutagens show selectivity
toward different sites (48). These multiple sites of re-
action may, in themselves, fragment the two classes
into many,

Metabolism ereates an additional complication. For
many compounds, metabolic conversion precedes their
mutagenic activity. Often the compound that is being
evaluated, the promutagen, is not itself a mutagen; it
must first be converted by metabolism into the final
reactive moiety, the ultimate mutagen. Often the ulti-
mate mutagen bears little resemblance to the promu-
tagen. This alkylating agent, the N-nitrosamines, are a
good example of this. The N-nitrosamine promutagens
are converted to simple carbonium ion ultimate muta-
gens before a mutagenic effect is seen (49).

Eight compounds in the study presented here re-
quired external activation before they elicited a muta-
genic response. They were nonmutagenic without the
treatment. In additon, . coli cells are known to contain
several enzymes that participate in metabolic activation
of mutagens (52,52). The compounds that are coded us-
ing the descriptors may have been very different from
those which actually damaged the DNA. Metabolism
alone may create many classes where two were assumed.

Damage to DNA within £. coli cells can be repaired
by several repair mechanisms (52,53). This also com-
plicates the problem. Different types of damage will be
repaired by different mechanisms and to different ex-
tents. In faet, error-prone repair has been implicated
in some forms of mutagenesis (34).

Now the problem can be seen in a different light:
mutagenesis is a complex problem consisting of many
stages. The assumption of two classes for the very dif-
ferent structures within the data set becomes difficult
to maintain. Fach structural type, each functional group,
will have its own chemistry governed by its intramo-
lecular environment. A compound’s transport into a cell,
its metabolism and remetabolism by a variety of differ-
ent mechanisms, the site of its interaction with DNA,
and the repair processes initiated by the damage that
it causes, will all be determined by the chemistry of its
overall structure and its functional groups. Within the
training set, even the more homologous series of com-
pounds may have different chemistry. Of the seven sty-
rene oxides in the training set, six are mutagenic while
ohe is nonmutagenic. The m-chloro and m-methyl de-
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FIGURE 5. A hypothetical two-space for mutagens and nonmuta-
gens. The two classes are distinct but cannot be separated by a
single linear discriminant function.

rivatives are mutagenic; however, the m-methoxy de-
rivative is not. It seems that each structural elass might
require a separate study. The data space may consits
of not two classes, but many.

By necessity, this review of the mechanisms of mu-
tagenesis has been brief. Many references are available
for those interested in a more complete description of
this subject (48,55).

Effects of Diversity

Each additional subclass that is included in a partic-
ular study lends greater complexity to the data set and
makes the separation into distinet “active” or “inactive”
classes more difficult, especially if the presence or de-
gree of subgrouping is unknown. Figure 5 illustrates a
simple, hypothetical, two-dimensional two-class prob-
lem. The mutagens cluster strongly in two separate
regions of the two-dimensional space, but they are still
well separated from the strongly clustered nonmuta-
gens. In this simple case the imaginary descriptors are
quite capable of separating the mutagens from the non-
mutagens. Such a deseriptor set is the goal of feature
selection procedures.

\\

nonmulagens

\/

FIGURE 6. An optimal single linear decision surface for the hypo-
thetical problem shown in Fig. 5.

mulagens

The problem arises with discriminant development.
This example is best separated by two lines as shown
in Figure 5. However, if only two classes are assumed
then the LDF developing methods would attempt to
separate the data into two classes with a single hyper-
surface. An optimal single hypersurface appears in Fig-
ure 6. While it represents the best classification results
that can be achieved with a single diseriminant, these
results are still far less desirable than the complete
separation that this descriptor space ideally allows.
These results would reflect on the descriptor set which
would probably be abandoned in favor of further de-
scriptor development.

This hypothetical case is very simple. While cluster
analysis can sometimes uncover clustering in the higher
dimensional space that is usually required for SAR stud-
ies, such clustering is often difficult to detect due to
diffuse and oddly shaped classes, outliers, and misclas-
sified data. The difficulties also increase when one of
the elusters is not well represented. Such 4 case is shown
in Figure 7. Clustering analysis may not identify the
smaller cluster and the compounds it contains may skew
the developing surface as shown in Figure 7 or be mis-
classified in favor of the larger subgrouping.

‘ nonmut agens

FiGURE 7. Another hypothetical example showing two mutagen clusters but one is poorly represented. A single skewed linear

deeision surface is shown.
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There is no reason for attempting to develop more
than one discriminant given what appears to be a two-
class problem, however. Doing so would be an unsound
practice that could quickly lead to trivial solutions of no
real value or predictive capability. The solution lies in
the identification of subgroupings of data.

Coding Heterogeneous Structures

The data space that was provided to the PR routines
for the mutagen study may have been complicated by
many subgroups. Perhaps no hyperplane can be found
that will adequately separate the mutagens from the
nonmutagens. Also, if each subelass is not well repre-
sented or if the number of subelasses is unknown, clus-
ter analysis may be of little value. The problem is not
well formulated.

But, what will cecur if we insist on maintaining the
two class mutagen-nenmutagen preblem? Could the
complexity of the space have been due to a poor choice
of descriptors? After all, the descriptors determine the
structure of the data space. 1f we maintain that a mu-
tagen is a mutagen and a nonmutagen is a nonmutagen
could we, with greater effort, still find a “core” of mu-
tagenieity through some “ultimate” descriptor set?

This brings us to the second question regarding het-
erogeneous data sets: Can such sets be properly coded?
If s0, then how many descriptors are needed? We noted
previously that there is a limited number of degrees of
freedom. Can the data be adequately described and still
stay within these limits?

Examination of other PR-SAR studies may help to
answer these questions. Henry and Jurs reported such
a study involving some multiply substituted 9-anili-
noacridines (77) (Fig. 8). They developed a set of 18
descriptors that was capable of 94% classification of 213
compounds and achieved up to 86% correct external
prediction. These external results indicate that the de-
scriptor set codes information pertinent to the activity.
It should be noted here that a study of any homologous
series already has a good desl of information implicitly
coded in the identical structural backbone that does not

N
5 10 4

FiGure 8. The S-anilinoacridine backbone of the compounds used
in the study by Henry and Jurs. Multiple substituents were at the
2,3,4,5,6,1',2', and 3" positions.

need to be explicitly coded by descriptors. The coding
that is required to explain the activity among the com-
pounds consists of sites and types of substitution, a task
whaose difficulty should not be underestimated. One can
also begin a study by assuming a common mechanismnt,
although this may not always be the case. We will return
to this study shortly.

Another PR study was performed by Ham and Jurs
(56). The goal of this study was to classify olfactory
stimulants; musks and nonmusks. The compounds in-
volved in this study contained six different structural
backbones. The training set of 140 compounds were 100%
correctly classified by seven deseriptors. If the receptor
mediated theory of olfaction is correect, then a common
thread runs among these compounds. Activity in such
a case can be explained in terms of the “fit” of a par-
ticular compound into such a receptor. The deseriptor
set had to code not for the heterogeneous structures
but for the single, or possibly several similar, receptor
sites.

What features should be coded in the mutagen study?
There is no similar backbone and no receptor site. The
activity depends not on some general whole-molecule
property but on the reactivity of the functional groups
within each molecule. No common thread runs through
the mutagens. But, while each structural type and func-
tional group will have its own chemistry, can we still
attack the problem by coding each type individually?

With its structural backbone information already im-
plicitly coded, the 9-anilinoacridine study required 18
descriptors to classify 94% of its training set. The mu-
tagens contained at least 12 different structural groups.
How many descriptors, how much information, is needed
to code for each? Most of these compounds were smaller
than the anilinoacridines and so may not require 18 de-
scriptors. Could they be coded by four or five? If so,
then the study would require 50 to 60 deseriptors, This
is far above the 35 degrees of freedom which this study
is allowed in order to avoid fortuitous separations. Also,
if each of the structural classes is coded separately,
some descriptors will code for only the one or two com-
pounds which are contained within that class. This is a
situation that should be avoided in PR studies and, in
fact, in almost any numerical analysis. Another serious
problem of such an approach is insufficient representa-
tion of the structural classes. Can any structural class
that may contain four, five, or ten sites of substitution
be adequately described using a handful of compounds?
The answer is probably “no.”

When the biological activity of a class of compounds
depends on specific chemical reactions and not on whole
molecule properties, common intermediates, or specific
receptor sites then heterogeneous data sets can not be
adequately represented.

Chance Factors in Pattern
Recognition

The poor external prediction results may have been
due to unrealistic classification, “confusion” of the data
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space, insufficient degrees of freedom, improper rep-
resentation, or a combination of all of these. Why, then,
were the classification results for the training set so
good?

The answer may lie in three separate but related
phenomena: expected random classification due to the
number of degrees of freedom, random classification
based on fortuitous feature selection results, and clas-
sification due to dependence on trivial differences in the
training set. We will address each of these phenomena
in turn.

Previpusly it was noted that the number of variables
used in a study must be kept below approximately one-
third the number of patterns in the smallest class. Above
these limits the prebability of achieving random 100%
correct classifications becomes unacceptably large. In
fact, if the number of dimensions used equals the num-
ber of observations, 100% classification is assured. On
the other end of the scale, with no descriptors at all,
50% of the patterns can be correctly classified by simply
assigning all of the patterns to one class. This, of course,
is a minimum value for equal class sizes. For an unequal
class distribution of 70/30, 70% correet classification can
immediately be achieved by assigning all of the patterns
to the more populous class. A suceess rate of 58% can
be achieved by classifying the patterns with the same
probabilities as the class memberships if they are split
70/30.

These are the well-known extremes but often the mid-
dle of the range is forgotten. Each additional dimension
will increase the percentage of random, apparently cor-
rect, classifications. For classes of equal size these clas-
gsifications start at 50% with no descriptors at all and
increase until 100% classification is guaranteed at the
number of descriptors equal to the number of obser-
vations. We conducted a series of studies in order to
better understand this phenomenon. We found that for
100 patterns which were split equally between two
classes, 10 random descriptors can be expected to sup-
port such artifactual classifications of about 75%.

These artifactual classifications depend on several fac-
tors including the number of observations, the number
of descriptors, the relative class sizes, and the overall
distribution of the data. The details of these studies are
presented elsewhere (57,58).

This does not mean that classification results using
relatively large numbers of descriptors will always be
fortuitous. It does mean that a large set of descriptors
will always apparently achieve good classification re-
gardless of whether the deseriptor set actually can de-
scribe the SAR which is occurring. There are two ways
to evaluate the “realness” of classification results. First,
as will be shown elsewhere, the percentage classification
due to artifacts is easily determined and can be com-
pared to the value obtained within an actual study. The
difference between the two values will serve as an in-
dicator of the actual information contained within the
deseriptors. Second, the artifactual classifications are
not based on any relationship and so will not extrapo-
late. A weight vector that does not explain the SAR

within the data will have no real predictive ability.

The feature selection methods used may also contrib-
ute to fortuitous classifications. The mutagen study was
conducted by searching through 64 different descriptors
for an optimum set. Such exploratory analysis is com-
mon in data analysis and certain criteria determine
whether a set is considered optimal or useful. An im-
portant index in regression analysis is the correlation
coefficient R. A high value of R indicates that the de-
seriptors account for a large percentage of the variation
in the dependent variable, the biological activity in SAR
studies. An important indicator in PR analysis is the
percentage of correctly classified patterns. Such clas-
gification results indicate that the descriptors contain
information pertinent to the class differences. In search-
ing a pool of numbers for a set which will satisfy these
criteria, what are the chances of finding such a set by
chance; a set with no SAR significance?

Topliss and Edwards investigated this phenomenon

for regression analysis (59). They showed that the chance
correlation becomes a very real possibility as the num-
ber of variables searched becomes large in relation to
the number of observations included in a study.
We have investigated similar phenomena for PR ana-
lysis and have found that classification results for a
training set can be improved due to chance if large num-
bers of descriptors are searched. A Monte Carlo study
of 100 randomly classified patterns in eight dimensions
achieved 86% correct classification after searching 32
descriptors. There was no information in the descriptors
and no relationship between the patterns. The feature
selection procedure merely “chose” those numbers which
improved the classification results, the criterion for a
valuable descriptor set. This was only one example, and
in similar trials the same classification results required
a total pool ranging from the 32 to 60 descriptors. Com-
plete separation was possible, but required a larger pool
of variables. The details of these studies will be pre-
sented elsewhere (60).

This is not to imply that classification results achieved
after searching a large pool will always be fortuitous or
that only small numbers of descriptors should be tried.
It does mean, however, that the descriptors used should
be carefully generated and selected for chemical signif-
icance. “Shotgun” approaches consisting of the gener-
ation of copious quantities of descriptors in hopes of
finding a useful set should be avoided. This problem also
highlights the need for an external prediction set. For-
tuitous classifications for the training set will not ex-
trapolate, and external prediction results will be poor.

These two studies were performed using random,
continuous, completely uncorrelated variables that are
not always equivalent to “real” variables. The differ-
ences between the data types are currently under in-
vestigation but we feel that much the same trends
prevail. We are also investigating the effects this has
on the allowed degrees of freedom for a particular study.

The third difficulty is the possibility of classifying the
training set due wholly or in part to class differences
that are completely dependent on the training set; fea-



PATTERN RECOGNITION TECHNIQUES 341

tures that may or may not affect the biological activity.
An extreme example will illustrate this. Suppose some
benzoic acid esters are classified as either quick to hy-
drolyze or slow to hydrolyze. Additionally suppose that
these esters were formed from a wide range of alcohols
and that all of the rings are multiple substituted by a
variety of substituents. Now, perhaps due to random
chance, synthetic requirements, or availability of the
esters, suppose all the “quickly” hydrolyzing compounds
have a p-methyl group. The presence of the p-methyl
group is a deseriptor that provides 100% correct clas-
sification of the training set. The p-methyl group is al-
most certainly not the only factor affecting the rate of
hydrolysis, however. The number of compounds and the
range and quantity of substitution may serve to ccclude
this defect in homogeneity if the compounds are not
closely examined. This is a simple example, but the
conecept is real. Any feature that is skewed toward one
class or the other but is not really involved in the activity
can skew the PR results. Other, less severe but still
unequal, partitioning of values between the classes are
possible and will have similar effects. While the chemical
insignificance of this “ideal” descriptor is obvious, other
“ideal” descriptors which appear more chemically sig-
nificant or are complex or are imbedded within multi-
dimensional sets of descriptors may be more subtle.

Some such subtle cases may have been present in the
mutagen data set. Close examination of the compounds
showed that the bulk of compounds containing phos-
phorus were mutagenic, the bulk containing sulfur were
nonmutagenic, nitrofurans were predominantly muta-
genie, and pheny! rings oceurred more frequently within
the nonmutagenic compounds. While these features
probably play a part in the chemistry of mutagenesis,
their unequal distribution between the two classes could
cauge training set dependencies. In order to demon-
strate this, indicator variables were generated that coded
only for the presence or absence of the substructural
features. These four descriptors alone were capable of
correctly classifying 76% of the training set compounds.
Six additional descriptors of meaningless random num-
bers were then added for a total of ten, the number in
the final descriptor set in Table 2. PR analysis with this
manufactured descriptor set achieved the same classi-
fication results as with the real descriptor set, 90% cor-
rect. Two of these features are found in the final
descriptor set and the other two figured prominently in
other sets. What would have been the result if move
nonmutagens with phenyl rings had been screened by
the Gene-Tox report, or more nonmutagenic sulfur com-
pounds? Would the results have been different if none
of the mutagenic nitrofurans had been included in this
study? In such a ease, we would be justified, within the
confines of the training set, in saying that nitrofurans
were nonmutagenic, a statement that certainiy is not
true.

These indicator variable results are not equivalent to
the actual results because different patterns were mis-
clagsified in each case. As such, it may not be the best
example, but it should serve to illustrate the problem.

Differences between the classes that are not related to
the differences in activity ean lead to erroneous results.
Once again, the phrase, “correlation does not imply
causation,” rings true. External prediction may be use-
ful in evaluating these effects, also.

Of course, in many cases, such trivial differences may
not be obvious. An awareness of the problem, however,
is the first step toward its solution. An investigator
should be familiar with the compounds in the data set
and should deal as closely as possible with chemistry
and actual mechanism of activity. The deseriptors should
be evaluated eritically to determine the extent to which
trivial training dependent features are coded. Contrar-
ily, if there is a feature that is significant to the SAR
and is always present only in one class, then it would
be foolish not to include it in an analysis. However, the
investigator should be aware of the dangers involved in
indiscriminant use of such variables.

Conclusion

In this paper we have presented an outline of the
steps taken in performing an SAR study using PR. We
have also presented some problems that are inherent
in this type of analysis. Pattern recognition is a set of
numerical techniques and as such it suffers from many
of the same weaknesses that other numerical techniques
have. An awareness of these weaknesses is needed in
order to avoid their effects. Data set development must
be given serious consideration. The true diversity of a
study is defined by the mechanism of the activity. The
classes used must be determined by the chemistry in-
volved in their activity and not by convenient man-made
classifications. In order to avoid fortuitous results, the
number of deseriptors employed in the descriptor sets
should be kept to a minimum. They should be chemically
plausible and generated with the mechanism of activity
in mind, if it is known. Screening large numbers of
descriptors or using large numbers in any one descriptor
set may lead to spurious results. The investigator should
also be aware of trivial, training set-dependent class
differences that could lead to real classifications which
cannot be extrapolated to a wider range of compounds.
Fortuitous elassifications will be revealed by doing ex-
ternal prediction. Such predictions shouid be done spar-
ingly if the number of compounds available is small. The
same compounds should not be consistently used for
such predictions. Doing so actually involves them in
descriptor set development and they lose their valuable
unbiased attributes.

Pattern recognition using linear discriminant fune-
tions should not be confused with regression and should
not be expected to provide gquantitative predietion re-
sults. The magnitude of the weight vector components
should be interpreted only with care for they are de-
pendent on the overall deseriptor set and are not unique.

We have endeavored to supply some guidance but,
unfortunately, there are no conerete guidelines for con-
ducting a study. The number of compounds required,
the apparent diversity, and the descriptors that will be
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useful are all dependent on the study at hand.

Development of the methodology and definition of its
limitations continue. Chance factors, similarity meas-
ures, and the development of new descriptors are active
concerns.

While the study that we have presented has peda-
gogical value, it shouid not discourage the use of the
techniques presented here, We helieve that computer-
aided sereening of mutagens is possible and we continue
to work toward that goal. While it seems clear that
mutagenesis is a complex process that will not easily be
explained, many of the difficulties which we encoun-
tered in this study can be avoided by studies involving
mechanistically similar subgroups of mutagens. The in-
formation gained from this simpler approach will not
only be valuable alone but might also be applied toward
attacking:more complex problems.
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